Word of Mass: The Relationship between Mass Media and Word-of-Mouth

Roman Chuhay

Higher School of Economics, International College of Economics and Finance

2014
Literature review

- **Theoretical:**
 - Candogan et al. (2010) assumes knowledge of complete structure of the network and decide how much each consumer should pay for the product.
 - Campbell (2013) studies the optimal pricing in the presence of word-of-mouth communication.

- **Empirical:**
Literature review

Theoretical:

- Candogan et al. (2010) assumes knowledge of complete structure of the network and decide how much each consumer should pay for the product.
- Campbell (2013) studies the optimal pricing in the presence of word-of-mouth communication.

Empirical:

Model

Firm:

- A firm develops a new product.
Model

Firm:

- A firm develops a new product.
- Due to the innovative nature of the product, quality v is realized after development stage and is treated as given exogenously.
Model

Firm:

- A firm develops a new product.
- Due to the innovative nature of the product, quality v is realized after development stage and is treated as given exogenously.
- To induce sales the monopolist advertises the product to the population.

Advertising is costly and producer pays $c_1 - s$ for advertising the product to proportion s of consumers. The cost function is convex in s, representing the idea that it is impossible to control who gets an advertisement. The innovator knows degree distribution of the network $p(k)$ and chooses optimally price p and amount of advertising s.

Roman Chuhay (HSE, ICEF)
Model

Firm:

- A firm develops a new product.
- Due to the innovative nature of the product, quality v is realized after development stage and is treated as given exogenously.
- To induce sales the monopolist advertises the product to the population.
- Advertising is costly and producer pays $\frac{c}{1-s}$ for advertising the product to proportion s of consumers.
Model

Firm:

- A firm develops a new product.
- Due to the innovative nature of the product, quality v is realized after development stage and is treated as given exogenously.
- To induce sales the monopolist advertises the product to the population.
- Advertising is costly and producer pays $\frac{c}{1-s}$ for advertising the product to proportion s of consumers.
- The cost function is convex in s representing the idea that it is impossible to control who gets an advertisement.
Model

Firm:

- A firm develops a new product.
- Due to the innovative nature of the product, quality v is realized after development stage and is treated as given exogenously.
- To induce sales the monopolist advertises the product to the population.
- Advertising is costly and producer pays $\frac{c}{1-s}$ for advertising the product to proportion s of consumers.
- The cost function is convex in s representing the idea that it is impossible to control who gets an advertisement.
- The innovator knows degree distribution of the network $p(k)$ and chooses optimally price P and amount of advertising s.
Model cont’d

Consumers:

There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ. All consumers have an outside option γ_i which is distributed as $U[0,1]$. A consumer buys the product if $v - P > \gamma_i$ thus the probability that a consumer buys the product is $q = v - P$. Consumers can buy the product only if they learn about it from:

▶ Direct advertisement from the producer.
▶ Observing a neighbor who has acquired the product.

No information asymmetry - once consumer knows about the product she knows immediately its quality.
Model cont’d

Consumers:

- There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ.

- All consumers have an outside option γ_i which is distributed as $U[0,1]$.

- A consumer buys the product if $v - P > \gamma_i$ thus the probability that a consumer buys the product is $q = v - P$.

- Consumers can buy the product only if they learn about it from:
 - Direct advertisement from the producer.
 - Observing a neighbor who has acquired the product.

- No information asymmetry - once consumer knows about the product she knows immediately its quality.
Model cont’d

Consumers:

- There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ.

- All consumers have an outside option γ_i which is distributed as $U[0,1]$.
Model cont’d

Consumers:

- There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ.

- All consumers have an outside option γ_i which is distributed as $U[0, 1]$.

- A consumer buys the product if $v - P > \gamma_i$ thus the probability that a consumer buys the product is $q = v - P$.

Consumers can buy the product only if they learn about it from:

- Direct advertisement from the producer.
- Observing a neighbor who has acquired the product.

No information asymmetry - once consumer knows about the product she knows immediately its quality.
Model cont’d

Consumers:

- There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ.

- All consumers have an outside option γ_i which is distributed as $U[0, 1]$.

- A consumer buys the product if $v - P > \gamma_i$ thus the probability that a consumer buys the product is $q = v - P$

- Consumers can buy the product only if they learn about it from:
 - Direct advertisement from the producer.
 - Observing a neighbor who has acquired the product.
Model cont’d

Consumers:

- There is a continuum of consumers that are embedded into a network, given by classical random graph with connectivity λ.

- All consumers have an outside option γ_i which is distributed as $U[0, 1]$.

- A consumer buys the product if $v - P > \gamma_i$ thus the probability that a consumer buys the product is $q = v - P$.

- Consumers can buy the product only if they learn about it from:
 - Direct advertisement from the producer.
 - Observing a neighbor who has acquired the product.

- No information asymmetry - once consumer knows about the product she knows immediately its quality.
Demand function:

\[D(s, v, P) = s(v - P) + (1 - s)(v - P) \sum_{k=0}^{\infty} p(k)(1 - (1 - w)^k) \]

\[= (v - P) \left(1 - (1 - s)e^{-\lambda w} \right) \]

where \(w \) is the probability that a randomly chosen consumer buys the product and \(p(k) = \frac{\lambda^k e^{-\lambda}}{k!} \).
Demand function:

\[w = s(v - P) + (1 - s)(v - P) \sum_{k=1}^{\infty} \xi(k)(1 - (1 - w)^{k-1}) \]

\[= (v - P) (1 - (1 - s)e^{-\lambda w}) \]

where \(\xi(k) = \frac{kp(k)}{\sum_{j=1}^{\infty}jp(j)} = \frac{kp(k)}{z_1} \) is the degree distribution of a neighbor.
Monopolist problem

\[
\max_{s,P} \quad wP - \frac{c}{1-s}
\]

\[s.t. \quad w = (v - P) (1 - (1 - s)e^{-\lambda w})\]

\[\text{Solution:}\]

\[
s^* = 1 - \frac{2\sqrt{ce^{\frac{w^*}{2}}} - \lambda c}{v}; \quad P^* = \frac{v}{2} \left(1 - \frac{\lambda \sqrt{c}}{2e^{\frac{w^*}{2}} - \lambda \sqrt{c}} \right),
\]

where \[w^* = \frac{v}{2} - \frac{\sqrt{c}}{2} \left(\frac{2}{e^{\frac{w^*}{2}}} - \frac{\lambda v}{2e^{\frac{w^*}{2}} - \lambda \sqrt{c}} \right)\]
The effect of advertising cost.
Proposition

The optimal price P^* *and amount of advertising* s^* *decrease in the cost of advertising* c. *The same is true about awareness of the product and diffusion perimeter.*
The effect of cost on price and advertising

Proposition

The optimal price P^* and amount of advertising s^* decrease in the cost of advertising c. The same is true about awareness of the product and diffusion perimeter.

- The monopolist substitutes more expensive advertising with word-of-mouth by lowering the price.
Proposition

The optimal price P^* and amount of advertising s^* decrease in the cost of advertising c. The same is true about awareness of the product and diffusion perimeter.

- The monopolist substitutes more expensive advertising with word-of-mouth by lowering the price.
- However, word-of-mouth substitutes advertising only partially and the overall awareness of the product falls.
In general, sales of the product is non-monotone function in advertising cost c. More precisely, if $1 < \lambda v < 4$ then sales of the product first decrease, but after some level increase in c. If $\lambda v < 1$ sales are decreasing in c on the whole range, while if $\lambda v > 4$ sales always increase in c.
The effect of cost on sales

Proposition

In general, sales of the product is non-monotone function in advertising cost c. More precisely, if $1 < \lambda v < 4$ then sales of the product first decrease, but after some level increase in c. If $\lambda v < 1$ sales are decreasing in c on the whole range, while if $\lambda v > 4$ sales always increase in c.

- When advertising cost is small a price decrease makes existing advertising more efficient, but doesn't add much to product awareness.
The effect of cost on sales

Proposition

*In general, sales of the product is non-monotone function in advertising cost c. More precisely, if $1 < \lambda \nu < 4$ then sales of the product first decrease, but after some level increase in c. If $\lambda \nu < 1$ sales are decreasing in c on the whole range, while if $\lambda \nu > 4$ sales always increase in c."

- When advertising cost is small a price decrease makes existing advertising more efficient, but doesn't add much to product awareness.
- When cost is high, a price decrease increases both advertising efficiency and awareness.
The effect of cost on sales

- Can sales be higher in the case of incomplete information?
The effect of cost on sales

- Can sales be higher in the case of incomplete information?

![Graph showing w* vs c]

Proposition

For sufficiently high cost c and $\lambda v > 2$ the sales in the case of incomplete information are higher than in the case of complete information. The statement is also true for sufficiently high connectivity λ.
The effect of advertising cost c ($\lambda = 1.85, \nu = 0.7$)

Induced network of buyers: $c = 0, s^* = 1, P^* = 0.35$
The effect of advertising cost c ($\lambda = 1.85, \nu = 0.7$)

Induced network of buyers $c = 0.1, s^* = 0.28, P^* = 0.22$
The effect of advertising cost c ($\lambda = 1.85$, $\nu = 0.7$)

Induced network of buyers $c = 0.2$, $s^* = 0.16$, $P^* = 0.13$
The effect of advertising cost c ($\lambda = 1.85$, $\nu = 0.7$)

Induced network of buyers $c = 0.3$, $s^* = 0.11$, $P^* = 0.03$
Consumer Surplus

Proposition

If $\lambda v > 1$ the consumer surplus is non-monotone functions in advertising cost c. More precisely, first consumer surplus falls, but after some level consumers become better-off as the cost increases. When $\lambda v < 1$ consumer surplus decreases in the cost on the whole range.
Proposition

If $\lambda v > 1$ the consumer surplus is non-monotone functions in advertising cost c. More precisely, first consumer surplus falls, but after some level consumers become better-off as the cost increases. When $\lambda v < 1$ consumer surplus decreases in the cost on the whole range.

- An increase in the advertising cost decreases product awareness, but price decrease is more than sufficient to offset this change.
Social Welfare

- What about social welfare? Can it grow in c?
What about social welfare? Can it grow in c?

Proposition

*If $2 < \lambda v < 6$ then social welfare first decreases in c up to the point where $c = \frac{1-\lambda v+\sqrt{1+4\lambda v}}{\lambda^2}$ and then increases. If $\lambda v < 2$ then social welfare always decreases while for $\lambda v > 6$ social welfare always increases in c.***
The effect of connectivity.
The effect of λ on advertising level

Proposition

The amount of advertising is a non-monotone function in connectivity λ. More precisely, for sufficiently small λ it increases in λ, while for sufficiently high λ decreases. If the advertising cost is sufficiently low then the advertising level always decreases in λ.

Proposition

The optimal price decreases in connectivity λ.
Proposition

If network connectivity λ is sufficiently small then both consumer surplus and sales increase in λ. When network connectivity is sufficiently high and advertising cost is sufficiently low both consumer surplus and sales decrease in λ.