
Methods of Machine Learning for Censored Demand 

Prediction 

Evgeniy M. Ozhegov
1
 and Daria Teterina

2
 

1 National Research University Higher School of Economics, Perm 614070, Russia  

tos600@gmail.com 
2 National Research University Higher School of Economics, Perm 614070, Russia 

dvteterina@gmail.com 

 

Abstract. In this paper, we analyze a new approach for demand prediction in 

retail taking into account data censorship and using machine learning methods. 

One of the significant gaps in demand prediction by machine learning methods 

is the unaccounted data censorship. Econometric approaches to modeling cen-

sored demand are used to obtain consistent and unbiased estimates of parame-

ters. These approaches can also be transferred to different classes of machine 

learning models to reduce the prediction error of future prices or sales volumes. 

In this study we build two ensemble demand models with and without censor-

ing demand, aggregating predictions for machine learning methods such as 

Ridge regression, LASSO and Random Forest. Having estimated the predictive 

properties of both models, we empirically prove the best predictive power of the 

model, taking into account the censored nature of demand.  

Keywords: Demand Censorship, Machine Learning, Demand Prediction. 

1 Introduction 

The grocery retail market has been under the close scrutiny of economists over the 

past few decades. A surge of interest to this field occurred in the late 90's when the 

companies Nilson and IRI Marketing Research began to collect individual data on 

purchases of retail chains visitors. Advances in individual data availability drew the 

researchers’ attention to the methods of machine learning. Investigators of the «big 

data» analysis have revealed the huge potential of machine learning methods for 

working with massive data sets, both in terms of the number of observations and pre-

dictors [4]. A number of scientists, including Agrawal & Schorling [1], Varian [5], 

Bajari, Nekipelov, Ryan, & Yang [2], showed greater predictive power of machine 

learning methods compared to traditional econometric approach. Therefore, today, 

when solving the problem of demand predicting, analysts’ preference is often given to 

machine learning.  

However, despite the significant breakthrough made by scientists in the evaluation 

of demand due to the methods of machine learning, there are still a lot of gaps, filling 
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of which can improve the predictive quality of models. One of such white spots is 

accounting for the censorship of demand. To date, there are a number of works devot-

ed to censored demand prediction using traditional econometric approaches, as well 

as several studies on demand forecasting (without censoring) using machine learning 

methods, at the same time, there are no works that combine censorship and machine 

learning methods. Therefore, in our work, we will try to fill this gap by constructing 

an ensemble model of censored demand using machine learning methods and empiri-

cally checking its predictive properties on the data of the retail food chain. 

2 Data 

The study is conducted on the data, provided by the regional grocery chain. One 

product category – pasta – is selected for analysis. The choice of such a product cate-

gory is justified by the high frequency of purchases of this product and the breadth of 

the range. The initial data from the grocery chain sales represents the full information 

on the pasta purchases for 6 years: from December 1, 2009 to January 31, 2014. The 

size of the analyzed sample, formed on the basis of the initial data, is 800000 observa-

tions. An observation reflects a stock keeping unit (henceforth SKU) that was availa-

ble in a certain store on a specific date. It is known how many units of a single item 

were purchased every day and at what price they were sold. Also, with the use of the 

product catalog the number of physical characteristics for each SKU was restored. 

Thus, for each purchase, not only the price and sales volume are utilized, but also 

such characteristics as the colour and shape of pasta, the flour type, the volume and 

type of packaging, the origin country, the brand name. In addition to all of the above, 

for each observation, the format of the store where the purchase was made is deter-

mined and whether the product was a participant of the discount promotion. Note that 

more than 60% of sales were zero (see Fig.1) – this leads to the necessity of censor-

ship accounting – what we do in our research. 
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Fig. 1. Frequency histogram of pasta purchases. 

 

3 Methodology 

3.1 Econometric models of the demand function 

 

Linear regression. The linear regression seems to be a typical model for demand 

estimation. It allows approximating the demand through a linear function. In our re-

search the model specification will be the following: 

jmt jmt jmtq X                                                      (1) 

where:   
jmtq  - the volume of the 

thj SKU purchases committed in the store m on 

the day t.   

jmtX   - the matrix of attributes including log of the price, product characteristics, 

promotional indicators, time attributes (dummies for a month, a year, an intra-week 

seasonality and holidays). 

jmt   - an idiosyncratic shock to each product, market and time.  

 

The model is estimated by the Ordinary Least Squares method. The linear regres-

sion model has become the basic specification for such machine learning methods, as: 

Ridge regression, LASSO and Random Forest. 
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Ridge regression and LASSO. As the next model specification, it was decided to 

choose a Ridge and LASSO regressions. Ridge regression refers to the so-called 

dense models: if we take all coefficients and sort them in descending order, we will 

note that there are quite a lot factors that strongly affect dependent variable. In our 

study, we assume the presence of a rather large number of factors (product character-

istics, store and time attributes) that affect the demand, so the use of ridge regression 

seems to be reasonable.  

To select a set of important parameters, the following function with penalty sub-

function is formed: 

                                      ˆ 2 2

imt jmt j j

i j j

= argmin (q - x ) +


                                 (2) 

where:  2

j

j

   - penalty subfunction.  

For    selection, the cross-validation is used: lambdas are sorting through from in-

finity up to 0 – thus, overfit in model is rising, bias is reducing and variance is in-

creasing. 

As for the LASSO, the algorithm of ̂  estimation is practically the same – the 

main difference is in the penalty subfunction:   

                      
                          ˆ | |2

imt jmt j j

i j j

= argmin (q - x ) +


                         (3) 

 

Random Forest.  The random forest is based on tree construction technology. The 

regression tree represents a set of rules that determine the value of the parameter of 

the regression function. Tree-based methods divide the characteristic space into a 

number of hypercubes and adapt the effects to each section, depending on the value of 

the independent variables [3].  

 

The method works by the following algorithm: let us consider to have the number 

of regressors . First of all, for each variable 
jX , the sample is splitted into two parts 

1R  (
j jz z )  and 

2R  (
j jz z ) (where 

1R  and 
2R  are areas of the observational space 

where the entire sample is divided into two parts with respect to the variable 
jX  in 

the clipping point 
jz ). Secondly, 

1̂ and 
2̂  are constructed:  

 

                                             

1

2

1
ˆ arg min ( )i i

i R

q x


 


                                               (4) 

                                          

2

2

2
ˆ arg min ( )i i

i R

q x


 


   

 

Then, according to formula (5), the residuals are estimated: 

                                                        1 1
ˆˆ

i i iq x  
                                                      (5) 

                                                   2 2
ˆˆ

i i iq x  
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Next, the sum of the balances in both areas is minimized:  

 

                                           1 2

2 2

1 2
,

ˆ ˆ( ) ( ) min
j

i i
j z

i R i R

 
 

  
                                        (6) 

 

Thus, such variable and cut-off point are chosen, where in each region we build our 

regression, and these regressions provide the best total prediction for q. Afterwards, 

we can still partition the regions  
1R and 

2R  (or only one of them) in the same way, 

and then choose the best error partitioning.  

The random forest is a complication of the above described model. In the case of a 

random forest, a lot of trees are built, but for each tree its own subset of factors is 

selected, and then an average prediction along the trees is constructed.  

 

3.2 Estimation algorithm 

 According to the literature review, machine learning methods are better able to 

cope with demand predicting (in particular, in grocery retailing), because they pro-

duce better out-of-sample fits than linear models without loss of in-sample fit quality 

[2]. Therefore, in order to achieve the most accurate prediction, we assume to use 

three methods of machine learning and only one traditional econometric approach - 

linear regression (as a basic model). In our study, we assume to partially follow the 

algorithm described in the [2] research, modernizing it somewhat by adding the stages 

of estimating censored models. The main steps of the empirical part of the study are 

supposed to look like this: 

 

1.   Theoretical construction of models: Linear regression, Ridge regression, 

LASSO regression and Random Forest. 

2.   Splitting the data randomly into three groups for the subsequent cross-

validation, where 25% of the data falls into the test sample, 15% - in the validation, 

and 60% - in the training. 

3.   Build models on the training sample, compare out-of-sample errors and deter-

mine the predictive power of each model. 

4.   Building a prediction on the validation sample and obtaining weights with 

which each model should be included in the final ensemble model. 

5.   Formation of an ensemble model of demand forecasting, its application to a test 

sample, determination of predictive power. 

6.   Implementation of paragraphs 1-5 for models with censoring. 

7.   Comparison of the predictive power of ensemble models with and without cen-

soring. 

Steps 6 and 7 are new for the algorithm proposed by the Bajery et. al [2]. They al-

low us to take into account the censored nature of the analyzed data. Therefore, to 

reveal the essence of the 6
th

 and 7
th

 steps of the previous algorithm, we propose to use 

the following steps for censorship accounting:  
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1.   Construct dummy for observation censorship: 1d   if the sales volume of 

the j-th  SKU purchases committed in the store m on the day t is greater than zero and  

0d     - otherwise.   

2.   Build probit model, where the created in the previous step dummy variable is 

taken as the dependent variable, and independent variables of all abovementioned 

models (Linear, Ridge, Lasso Regressions and Random Forest) used as regressors.  

3.   Classify observations into censored and uncensored  ˆ 0;1d   based on the 

probit estimates.  

4.   Train the Linear Regression on the dataset created from observations classi-

fied as uncensored ( ˆ 1d  ). 

5.   To build out-of-sample errors and determine the predictive power of the 

model.  

6.   Repeat the 4
th

  and 5
th

  steps for the Ridge,  Lasso and Random Forest mod-

els. 

 

 

3.3 Ensemble model construction  

 

After building models (Linear regression, Ridge, LASSO and Random Forest) on 

the training sample, comparing out-of-sample errors and determining the predictive 

power of each model, we proceed with the construction of the ensemble model. The 

main steps of this phase are described in [2] and look as follows: 

1.   Take the validation dataset. Treat the predicted values of the dependent vari-

ables from the four models as regressors and the actual value as the response variable. 

Assuming that the sum of the coefficients should be equal to one and each individual 

coefficient must be non-negative, build a constrained linear regression. 

2.   Take the test dataset. Use the fitted models for prediction in the test set , after 

that apply the model weights from the previous step, sum them up and construct the 

linearly combined prediction.  

The above algorithm is repeated for both model classes: with and without censorship. 

 

4 Results 

Since more than 60 percent of sales are zero, we should check the parameter esti-

mates for the need to use the censored regression model, testing for a bias in the mul-

tiple regression model (1) versus the censored regression model. For this, the parame-

ter estimates for two abovementioned specifications were calculated (Table 2). 
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Table 1. Estimation results for linear regressions with and without censorship of dependent 

variable 

Variable  Linear regression  
Censored linear  

regression  

Log(price)  
-5.581*** 

(0.058) 

-7.795*** 

(0.078) 

Size weight  
0.006*** 

(0.0001) 

0.008*** 

(0.0002) 

Promotion 
0.099*** 

(0.028) 

-0.120*** 

(0.034) 

Price*Size weight  
0.001*** 

(0.000) 

0.001*** 

(0.000) 

Country of origin   

China 1.233* 

(0.673) 

2.302*** 

(0.703) 

Colour   

 

Black 

 

5.076*** 

(0.480) 

 

8.589*** 

(0.511) 

Green -0.006 

(0.107) 

0.476*** 

(0.129) 

Multi 1.033*** 

(0.069) 

1.937*** 

(0.087) 

Red -0.634*** 

(0.217) 

-0.056 

(0.236) 

Flour   

Bean 1.600*** 

(0.122) 

2.685*** 

(0.147) 

Brown rice 0.015 

(0.115) 

0.663*** 

(0.149) 

Buckwheat 1.332*** 

(0.174) 

2.838*** 

(0.264) 

Starch 0.676*** 

(0.246) 

1.153*** 

(0.303) 

Soybeans -1.743*** 

(0.348) 

-1.308*** 

(0.381) 

Time attributes   

Holiday -0.178*** 

(0.048) 

-0.314*** 

(0.062) 

Sunday 0.658*** 

(0.033) 

0.833*** 

(0.041) 

Monday 0.074** 

(0.034) 

0.118*** 

(0.042) 

Wednesday 0.034 

(0.033) 

0.045 

(0.042) 

Thursday 0.086** 

(0.034) 

0.158*** 

(0.042) 

Friday 0.454*** 

(0.033) 

0.605*** 

(0.041) 

Saturday 0.846*** 

(0.034) 

1.137*** 

(0.041) 
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2009 -0.179*** 

(0.041) 

0.204*** 

(0.048) 

2010 -0.546*** 

(0.038) 

-0.346*** 

(0.045) 

2011 -3.152*** 

(0.061) 

- 

2012 -0.965*** 

(0.55) 

-1.373*** 

(0.089) 

2013 -0.593*** 

(0.034) 

-0.975*** 

(0.041) 

January -0.226*** 

(0.044) 

-0.311*** 

(0.056) 

February -0.152*** 

(0.044) 

-0.207*** 

(0.055) 

March -0.076* 

(0.043) 

-0.091* 

(0.053) 

May -0.093** 

(0.044) 

-0.099* 

(0.054) 

June -0.048 

(0.045) 

-0.052 

(0.054) 

July -0.161*** 

(0.045) 

-0.152*** 

(0.053) 

August -0.071 

(0.045) 

-0.096* 

(0.053) 

September  -0.075* 

(0.044) 

-0.118** 

(0.053) 

October 
-0.203*** 

(0.044) 

-0.229*** 

(0.054) 

November 
-0.116** 

(0.045) 

-0.252*** 

(0.058) 

December 
0.072 

(0.046) 

0.041 

(0.056) 

Store type   

Discounter 
2.278*** 

(0.012) 

4.413*** 

(0.147) 

Middle 
0.272*** 

(0.007) 

1.084*** 

(0.005) 

Large 
0.578*** 

(0.005) 

1.785*** 

(0.007) 

Hyper 
1.289*** 

(0.001) 

3.259*** 

(0.014) 

Const 
15.127*** 

(0.760) 

19.739*** 

(0.818) 
2

adjR  0.229 0.297 

N 800000 800000 

K 95 94 

 1.256 1.220 

Notation: Parameters’ estimates are presented in the cells of the table, standard errors – in the brackets.  

Significance levels: p*<0.1, p**<0.05, p***<0.01 
N –the number of observations, K – the number of parameters. 

Brands and forms of pasta are also considered in the model as control variables. 
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Basic category: Brand – «Maltagliati», country of origin – Italy, colour – without colour, flour – wheat, 

day of the week – Tuesday, year – 2014, month – April, store type – small.  

 

As can be seen, the effects of explanatory variables slightly vary over specifica-

tions, but the sign of parameter estimates is practically the same in both models. In the 

second specification, the effects value of almost all parameters is larger in modulus. 

This can be explained by the fact that linear regression without censoring underesti-

mates the values of the parameters. 

What is more vital to notice this is the better explanatory properties of the model 

accounting censorship. Thus, the value of the adjusted  2R  for censored linear regres-

sion is higher than for model without censorship.  

After evaluating the parameters of the basic linear model, the actual dependent var-

iable is fitted in the training set on each of the four models (Linear regression, Ridge 

regression, Lasso regression and Random Forest). Then, for every model the measure 

of the prediction quality, expressed by Root Mean Square Error (RMSE), is calculated 

(Table 2).  

The next step that is taken after RMSE estimation is the determination of the 

weights of each model for their inclusion in the final ensemble model. To do that the 

validation set is used: predicted values of the dependent variable from four models are 

treated as regressors into constrained linear regression, where the actual value of sales 

volume is used as dependent variable. Constrains for the linear regression are as fol-

lows: firstly, the sum of the estimates of the model parameters must be equal to one 

(since in the future the parameter estimates will be used as weights); secondly, the 

value of each parameter should be positive (for the same above-described reason). 

The results of constrained linear regressions estimation are presented in Table 2 as 

models weights in the combined model.  

Table 2. Root Mean Square Error (RMSE) for model specifications with and without censor-

ship accounting and models’ weights in ensemble model. 

 RMSE Weight in the linear 

combined model 

 Without censor-

ship accounting 

With censorship 

accounting 

Without censor-

ship accounting 

With censorship 

accounting 

Linear regression 1.256 1.220 1% 3% 

Ridge regression 1.255 1.218 13% 11% 

Lasso regression 1.244 1.203 42% 39% 

Random Forest 1.198 1.164 44% 47% 

Total RMSE for 

ensemble model 
1.163   1.116  

 

     

 

According to the estimation results, both ensemble models with and without cen-

sorship accounting have better performance than any of the evaluated models individ-
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ually. Moreover, the ensemble model accounting censorship of the data, has a better 

predictive power, which is indicated by the comparatively smaller RMSE.  

 

All in all, two vital conclusions can be drawn from the results of this study: firstly, 

we showed the real strength of machine learning methods combination for solving the 

prediction problem in retail demand. Secondly, we partially filled the gap associated 

with the demand censorship, showing the best predictive properties of models that 

take into account the censored nature of the retail data.  
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