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One of the principal research questions which
is still not sufficiently studied in the modern
literature (Weron, 2014) is accounting for the
long-term seasonal component (LTSC) in the
price of electricity, specifically in the context
of short-term forecasting. The several studies
attempt to fill in this gap by separately modeling
and forecasting of the long-term deterministic and
short-term stochastic price components (see, for
example, Tan et al., 2010; Keles et al., 2016;
Nowotarski and Weron, 2016). The authors
conclude that accounting for LTSC and a proper
choice of the method and parameters for the
LTSC estimation yield a significant decrease
of the forecast error as compared both to
the traditional ARX model and to the naïve
approach (Conejo et al., 2005).

But in the mentioned forecasting researches
the authors pay little attention to such an
important issue as sharp short-term and,
generally speaking, poorly predictable extreme
values of the electricity price, i.e. spikes. These
outliers usually occur due to accidents at power
plants, congestions of the energy transmission
networks, and climatic anomalies. In the pioneer
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papers of Trück et al. (2007); Janczura et al.
(2013), concerning the problem of spikes, the
authors note that, in the presence of such
extreme price values, subtracted deterministic
and stochastic components of the electricity price
may be substantially distorted. As a result,
the adequacy of models for such components
(especially, linear models where SCARX belongs)
is very doubtful, with the estimates of parameters
of these models being potentially biased. In
the case of in-sample modeling such biases may
cause, for example, under-evaluation of value-
based risk measures (such as VaR and EaR), while
in the case of application of such models to the
out-of-sample period (i.e., solving the forecasting
problem), this may potentially corrupt the price
forecast accuracy.

It is important to emphasize that the situation
is worsened by the fact that in the literature
there is no consensus on which price values are
to be considered as spikes, and thus, which spike
identification approach should be used. In the
framework of in-sample modeling, there is quite
a lot of approaches discussed in the literature:
threshold filter on prices, standard deviation filter
on prices, percentage filter on prices, recursive
and moving filters on prices, Markov regime-
switching models, etc. (Lapuerta and Moselle,
2001; Trück et al., 2007; Weron, 2006; Borovkova
and Permana, 2006; Fanone et al., 2013; Janczura
et al., 2013). But the application of these methods
may lead to principally different results, with
the number of observations classified as spikes
(extreme values) being dramatically different for
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the same time-series. On the one hand, it is quite
natural to assume that neglecting pre-filtering
of extreme values has a negative impact on the
forecast accuracy. But, on the other hand, too
aggressive filtering of spikes (for example, by
applying a filter with a low cut-off threshold) will
substantially distort the original time-series and
result in predictions virtually unrelated to the
original historical dynamic of the price.

Taking into account the fact that previous
papers majorly focus on the effect of pre-filtering
of extreme values in the framework of in-sample
electricity price modeling, as well as considering
a significant role that the estimates of long-
term trend-seasonal and short-term seasonally
stochastic components play in the problem of
forecasting, in this research we pose a question
of the impact of outlier filtering on the electricity
price forecasting accuracy.

The basis model of our research is seasonal
component autoregressive with exogenous factors
(SCARX) that proposed by Nowotarski and
Weron (2016) and consists of the following steps.

At the first step, the time-series of hourly
electricity prices pt, t = 1, . . . , T is taken the
logarithm of and is additively decomposed into a
long-term seasonal (trend-cyclical) Lt and a short-
term seasonally stochastic St components:

log pt = Pt = Lt + St (1)

We use the wavelet-decomposition for LTSC
estimation as in Nowotarski and Weron (2016);
Xiao et al. (2017); Yang et al. (2017) and consider
a wide range of the scale parameter values m =
8, . . . , 13.

At the second step, for the short-term
seasonally stochastic component St parameters
of the autoregressive specification proposed by
Misiorek et al. (2006) are estimated:

St = α1St−24 + α2St−48 + α7St−168 + (2)
+α8mSt + β1Zt +

∑
i=1,6,7

diD
i
t + εt

where St−24/48/168 are autoregressive
components; mSt is the "price signal" equal
to the minimum price of the previous day; Zt ia

a day-ahead forecast of electricity consumption
before time moment t; Di

t are dummy variables
accounting for weekly seasonality (i = 1, 6, 7 for
Monday, Saturday, and Sunday correspondingly);
εt is a normally, independently, and identically
distributed error term. The modeling is run for
each of the day hour separately, i.e. there are 24
models in total.

At the third step, the Lt is assumed to be
persistent in the short-term scales, i.e. its forecast
value is equal to the value in the corresponding
hour of the previous day. Finally, at the fourth
step, the early obtained forecasts ŜT+h and L̂T+h
are summed up, and the inverse logarithmic
transformation is calculated which gives the
final forecast p̂T+h. We will denote the model
as SCARXm.

The choice of the SCARX-model as a basis
model for our study is dictated, firstly, by the
fact that this model separately estimates the long-
term trend-cyclical and the short-term seasonally
stochastic components of the price, with both
of the components being prone to substantial
influence of outliers; and, secondly, by the fact
that the model, by changing the smoothing
parameter, allows to obtain a whole range of quite
independent models, and, thus, to have more
objective results of testing on them.

We extend the SCARX-model by the following
well known outlier filters (Xt – the part of St
obtained after remove of weekly and intra-day
seasonality, Xo

t – the subset of price spikes).
Threshold filter on prices (TFP):

Xo
t = {Xt : |Xt| ≥ 0.5} (3)

Standard deviation filter on prices (SFP):

Xo
t = {Xt : |Xt −X| ≥ 3 · σ} (4)

Recursive filters on prices (RFP):

Xo
t,i = {Xt : |Xt −X i| ≥ 3 · σi} (5)

Moving filters on prices (MFP):

Xo
t =

⋃
n=1,...,N

{Xτn : |Xτn −Xn| ≥ 1.96 · σn} (6)
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Table 1: Comparison of forecasting performance (in the WMAE sense) of SCARX-models (with wavelet smoothing
parameters m = 8, ..., 13) with and without outlier filtering for power markets ATS Europe-Ural and ATS Siberia.
Models Outlier filters

SRC TFP SFP RFP MFP PFP CFP
ATS Europe-Ural (EU)

ARX 4.72 – – – – – –
SCARX8 4.82 4.53 (-0.29) 4.57 (-0.25) 4.95 (0.13) 4.66 (-0.16) 5.13 (0.31) 4.58 (-0.24)
SCARX9 4.73 4.46 (-0.27) 4.48 (-0.25) 4.76 (0.03) 4.60 (-0.13) 5.00 (0.27) 4.49 (-0.24)
SCARX10 4.67 4.44 (-0.23) 4.46 (-0.21) 4.64 (-0.03) 4.56 (-0.11) 4.90 (0.23) 4.47 (-0.20)
SCARX11 4.66 4.43 (-0.23) 4.44 (-0.22) 4.58 (-0.08) 4.60 (-0.06) 4.93 (0.27) 4.48 (-0.18)
SCARX12 4.65 4.44 (-0.21) 4.45 (-0.20) 4.55 (-0.10) 4.63 (-0.02) 4.90 (0.25) 4.48 (-0.17)
SCARX13 4.62 4.46 (-0.16) 4.50 (-0.12) 4.76 (0.14) 4.68 (0.06) 4.89 (0.27) 4.56 (-0.06)

Summary
Δ – -0.23 -0.21 0.01 -0.07 0.27 -0.18
# < SRC – 6 (100%) 6 (100%) 3 (50%) 5 (83%) 0 (0%) 6 (100%)

ATS Siberia (SI)
ARX 8.84 – – – – – –
SCARX8 8.93 7.75 (-1.18) 7.72 (-1.21) 8.02 (-0.91) 8.09 (-0.84) 7.82 (-1.11) 7.75 (-1.18)
SCARX9 9.07 7.58 (-1.49) 7.64 (-1.43) 7.74 (-1.33) 7.94 (-1.13) 7.86 (-1.21) 7.58 (-1.49)
SCARX10 8.77 7.47 (-1.30) 7.53 (-1.24) 7.41 (-1.36) 7.73 (-1.04) 7.51 (-1.26) 7.46 (-1.31)
SCARX11 8.83 7.42 (-1.41) 7.52 (-1.31) 7.34 (-1.49) 7.74 (-1.09) 7.52 (-1.31) 7.41 (-1.42)
SCARX12 9.35 7.53 (-1.82) 7.69 (-1.66) 7.45 (-1.90) 8.03 (-1.32) 7.89 (-1.46) 7.50 (-1.85)
SCARX13 8.72 7.96 (-0.76) 7.45 (-1.27) 7.36 (-1.36) 7.71 (-1.01) 7.63 (-1.09) 7.35 (-1.37)

Summary
Δ – -1.33 -1.35 -1.39 -1.07 -1.24 -1.44
# < SRC – 6 (100%) 6 (100%) 6 (100%) 6 (100%) 6 (100%) 6 (100%)
Comments: WMAE values (in percents) averaged over the test period are given in rows with models names. Absolute deviations of errors of
the model with outlier filtering from errors of the model without outlier filtering are presented in parentheses. Minimum values of WMAE
for specific filter and power market (which also are smaller than the error of ARX-model) are given in bold. Minimum values of WMAE for
all filters within a specific power market are underlined. Δ is the average change of error within one specific filter. "# < SRC" is the number
of SCARX-models with a filter, which produced errors smaller than the errors of the same models on the original data.

Percentage filter on prices (PFP):

Xo
t = {Xt : Xt ≤ X2.5

t }∪{Xt : Xt ≥ X97.5
t } (7)

Besides the above-mentioned approaches to
data filtering, we also propose a combined filter
on prices (CFP), which, to the best of our
knowledge, has not been applied in the previous
studies on the energy economics in the context
of outlier identification. CFP is based on the
committee machine approach from the field of
machine learning and implies classification of an
observation as outlier only in the case when at
least a half (Q = 0.5) of the basic K algorithms
predicted the observation as such (Ablow and
Kaylor, 1965; Tresp, 2001):

Xo
t = {Xt : 1

K

K∑
k=1

I(Xt ∈ Xo
t,k) ≥ Q} (8)

For the empirical experiment, we used data
of four day-ahead electricity markets: the
Europe-Ural (EU) and Siberia (SI) areas of
the Russian ATS market; the biggest European
market Nord Pool (NP), as well as the
US power market Pennsylvania-New Jersey-
Maryland (PJM). Performance evaluation was
made on the basis of two independent approaches
– weekly weighted mean absolute error WMAE
(Table 1 are partially shown the obtained values)
and a formal statistical procedure of a model
confidence set (MCS) identification (Hansen
et al., 2011). The obtained results allowed us to
make the following interest conclusions.

Firstly, outlier pre-filtering of the original data
in many cases lets achieve substantial forecasting
accuracy gain. For example, in the Siberia area of
the Russian ATS market the obtained decrease in
forecasting error lies in the range of 1-1.5% of the
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Table 2: Minimum averaged WMAE for the most precise SCARX-models, as found by on-grid optimization of parameter
values for filters TFP, SFP, RFP, and MFP for power markets ATS Europe-Ural (SCARX13), ATS Siberia (SCARX13),
Nord Pool (SCARX10), and Pennsylvania-New Jersey-Maryland (SCARX12).
Market Outlier filters

SRC TFP SFP RFP MFP CFP*

EU 4.62 4.44 (0.75 / 0.3%) 4.45 (6.5 / 0.2%) 4.44 (9.0 / 0.2%) 4.46 (1.000 / 0.3%) 4.56
SI 8.72 7.43 (0.75 / 1.9%) 7.36 (2.0 / 1.8%) 7.33 (2.0 / 2.2%) 7.71 (0.950 / 4.2%) 7.35
NP 8.38 8.23 (0.75 / 0.5%) 8.23 (4.5 / 0.4%) 8.25 (6.0 / 0.3%) 8.23 (0.999 / 0.9%) 8.31
PJM 10.60 10.57 (1.50 / 0.1%) 10.58 (6.5 / 0.0%) 10.58 (6.0 / 0.0%) 10.60 (1.000 / 0.1%) 11.21
Comments: the optimal parameter values and the corresponding average fraction of removed outliers for the specified WMAE are given
in parentheses. SRC denotes the results for the original, unfiltered data. CFP* is the combined filter based on the individual filters with
unoptimized parameters.

average weekly price. This is a very good result
since it potentially may bring significant financial
saving to the market participants.

Secondly, among the studied filters with a
priori set parameters, the most stable positive
results were demonstrated by filters TFP (with
the threshold for the logarithmic price being equal
to 0.5), SFP (with the threshold being equal
to three standard deviations), and CFP (the
majority vote rule). TFP provides accuracy gain
in 63% of the cases, SFP – in 67%, and CFP –
in 63%. In the context of MCS-based ranking,
increase of probability for a model to get into the
MCS occurs for these filters in 58%, 54%, and
54% cases, correspondingly.

Thirdly, the main cause of difference in the
results of application of the filters lies not in
the difference of their algorithms, but in the
improper a priori choice of the parameters of
these filters. If a grid-search to find forecast
error-minimizing value of the filter parameter is
run, then, concerning the obtained forecasting
accuracy, the difference between the filters will
be negligible. In particular, filters RFP and
MFP, after finding the optimal values of their
parameters, allowed to obtain the final forecast
errors only slightly different from the ones of TFP
and SFP for each of the markets (see Table 2).

Fourthly, the proposed combined filter based
on the committee machine is a quite competitive
alternative to the individual methods both in the
case of a priori set parameters, and in the case of
grid-search optimized values of these parameters.
In the former case, CFP plays a role of a more
objective method which lowers the risk of an a

priori choice, taking into account the results of
each of the independent filters. In the latter case,
the grid-search procedure requires substantial
computational resources and cannot be applied
to the future, practically unavailable data, while
CFP uses as the basis algorithms an un-optimized
filters and is not resource demanding, but at the
same time results in forecasting accuracy which
is comparable to the best accuracy of individual
filters after optimization of their parameters (see
column CFP* in Table 2).

Finally, fifthly, although the above-given
conclusions seem inspiring, still, in rare case
both the SCARX-model, and outlier pre-filtering
may worsen the results of comparatively simple
autoregressive models. An example of such case,
among the considered power markets, is the
US PJM market, for which no advantages of
application of the SCARX-model and outlier pre-
filtering were obtained (both for the case of a
priori set filter parameters, and for the case of
finding their optimized values). This is why the
decision on application of the model and pre-
filtering should be taken with care.

Although the results of this study shed some
light on certain aspects of short-term electricity
price forecasting, still there arise a number of
new questions. Specifically, combining of forecast
is a promising technique of increasing forecasting
accuracy (Bates and Granger, 1969; Nan, 2009).
But, as it was shown in a number of previous
papers, not all the averaging methods allow
to obtain good results (Bordignon et al., 2013;
Nowotarski et al., 2014). From this perspective, it
would be challenging to understand whether pre-
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filtering helps in solving of existing here problems.
Another challenging question that arises in the
context of the current research is which is a
more efficient tool for obtaining accuracy gain –
combining of filters or combining of forecasts on
filtered data? We leave these and other questions
for further research.
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